资源类型

期刊论文 1088

会议视频 25

会议信息 4

年份

2024 2

2023 167

2022 174

2021 193

2020 96

2019 41

2018 26

2017 49

2016 30

2015 35

2014 45

2013 42

2012 21

2011 23

2010 44

2009 29

2008 20

2007 33

2006 3

2005 2

展开 ︾

关键词

SARS-CoV-2 7

COVID-19 5

微波散射计 5

碳中和 5

Cu(In 4

HY-2 4

2019 3

2型糖尿病 3

GPS 3

Ga)Se2 3

HY-2 卫星 3

HY-2A卫星 3

代谢与免疫 3

光催化 3

工程管理 3

微波辐射计 3

营养健康 3

CCS 2

CO2利用 2

展开 ︾

检索范围:

排序: 展示方式:

Interface engineering for enhancing electrocatalytic oxygen evolution reaction of CoS/CeO heterostructures

《化学科学与工程前沿(英文)》 2022年 第16卷 第3期   页码 376-383 doi: 10.1007/s11705-021-2062-x

摘要: To realize renewable energy conversion, it is important to develop low-cost and high-efficiency electrocatalyst for oxygen evolution reaction. In this communication, a novel bijunction CoS/CeO2 electrocatalyst grown on carbon cloth is prepared by the interface engineering. The interface engineering of CoS and CeO2 facilitates a rapid charge transfer from CeO2 to CoS. Such an electrocatalyst exhibits outstanding electrocatalytic activity with a low overpotential of 311 mV at 10 mA∙cm−2 and low Tafel slope of 76.2 mV∙dec–1, and is superior to that of CoS (372 mV) and CeO2 (530 mV) counterparts. And it has long-term durability under alkaline media.

关键词: interface engineering     CoS/CeO2     electrodeposition     electrocatalyst     oxygen evolution reaction    

Ultrasound-assisted co-precipitation synthesis of mesoporous Co3O4–CeO2 composite oxides for highly selective

《化学科学与工程前沿(英文)》 2022年 第16卷 第8期   页码 1211-1223 doi: 10.1007/s11705-022-2145-3

摘要: The one-step highly selective oxidation of cyclohexane into cyclohexanone and cyclohexanol as the essential intermediates of nylon-6 and nylon-66 is considerably challenging. Therefore, an efficient and low-cost catalyst must be urgently developed to improve the efficiency of this process. In this study, a Co3O4–CeO2 composite oxide catalyst was successfully prepared through ultrasound-assisted co-precipitation. This catalyst exhibited a higher selectivity to KA-oil, which was benefited from the synergistic effects between Co3+/Co2+ and Ce4+/Ce3+ redox pairs, than bulk CeO2 and/or Co3O4. Under the optimum reaction conditions, 89.6% selectivity to KA-oil with a cyclohexane conversion of 5.8% was achieved over Co3O4–CeO2. Its catalytic performance remained unchanged after five runs. Using the synergistic effects between the redox pairs of different transition metals, this study provides a feasible strategy to design high-performance catalysts for the selective oxidation of alkanes.

关键词: Co3O4–CeO2 composite oxides     cyclohexanone     cyclohexanol     ultrasonic-assisted co-precipitation     selective oxidation     solvent-free    

Al2O3 and CeO2-promoted MgO sorbents for CO2 capture at moderate

Huimei Yu, Xiaoxing Wang, Zhu Shu, Mamoru Fujii, Chunshan Song

《化学科学与工程前沿(英文)》 2018年 第12卷 第1期   页码 83-93 doi: 10.1007/s11705-017-1691-6

摘要: A series of Al O and CeO modified MgO sorbents was prepared and studied for CO sorption at moderate temperatures. The CO sorption capacity of MgO was enhanced with the addition of either Al O or CeO . Over Al O -MgO sorbents, the best capacity of 24.6 mg-CO /g-sorbent was attained at 100 °C, which was 61% higher than that of MgO (15.3 mg-CO /g-sorbent). The highest capacity of 35.3 mg-CO /g-sorbent was obtained over the CeO -MgO sorbents at the optimal temperature of 200 °C. Combining with the characterization results, we conclude that the promotion effect on CO sorption with the addition of Al O and CeO can be attributed to the increased surface area with reduced MgO crystallite size. Moreover, the addition of CeO increased the basicity of MgO phase, resulting in more increase in the CO capacity than Al O promoter. Both the Al O -MgO and CeO -MgO sorbents exhibited better cyclic stability than MgO over the course of fifteen CO sorption-desorption cycles. Compared to Al O , CeO is more effective for promoting the CO capacity of MgO. To enhance the CO capacity of MgO sorbent, increasing the basicity is more effective than the increase in the surface area.

关键词: CO2 capture     MgO sorbents     Al2O3     CeO2     flue gas    

Preparation and selection of Fe-Cu sorbent for COS removal in syngas

Bowu CHENG, Zhaofei CAO, Yong BAI, Dexiang ZHANG

《化学科学与工程前沿(英文)》 2010年 第4卷 第4期   页码 441-444 doi: 10.1007/s11705-010-0507-8

摘要: A series of iron-based sorbents prepared with iron trioxide hydrate, cupric oxide by a novel method was studied in a fixed-bed reactor for COS removal from syngas at moderate temperature. In addition, the sorbents mixed with various additives in different ratios were tested. The effects of additive type and ratio on the breakthrough capacity and desulfurization performance, as well as the influence of operating conditions on sulfidation behavior of the sorbent, were investigated. The simulate gas contained 1% COS, 5% CO , 20%–30% CO and 60%–70% H . The outlet gases from the fixed-bed reactor were automatically analyzed by on-line mass spectrometry, and the COS concentration before breakthrough can be kept steady at 1 ppmv. The result shows that the breakthrough sulfur capacity of the sorbent is as high as 25 g-S/100 g. At 700 K and space velocity of 1000 h , the efficiency of sulfur removal and breakthrough sulfur capacity of the sorbent increase with the increase of copper oxide with an optimum value. The result shows that the species and content of additives also affect desulfurization performance of the sorbent.

关键词: sorbent     desulfurization     COS removal     syngas    

CeO doping boosted low-temperature NH-SCR activity of FeTiO catalyst: A microstructure analysis and reaction

《环境科学与工程前沿(英文)》 2022年 第16卷 第5期 doi: 10.1007/s11783-022-1539-2

摘要:

• CeO2 doping significantly improved low-temperature NH3-SCR activity on FeTiOx.

关键词: NH3-SCR     CeO2 doping     Low-temperature NOx removal     Improved redox property     In situ XAFS analysis    

用于CO甲烷化的Ni/CeO2催化剂还原过程重构行为调控研究 Article

曹昕宇, 浦天成, Bar Mosevitzky Lis, Israel E. Wachs, 彭冲, 朱明辉, 胡永康

《工程(英文)》 2022年 第14卷 第7期   页码 94-99 doi: 10.1016/j.eng.2021.08.023

摘要:

还原预处理是活化负载型金属催化剂的重要步骤,但很少受到关注。本研究发现负载型镍催化剂的重构过程对预处理条件非常敏感。与使用氢气的传统活化方式相比,用合成气活化催化剂可以产生具有多晶结构的负载型镍纳米颗粒,其中包含丰富的晶界。独特的活化方式使得催化剂上CO吸附得到增强,提高了CO甲烷化率。通过操纵活化条件来调整催化剂结构的策略也可以被用于指导其他负载型金属催化剂的理性设计。

关键词: 镍-氧化铈催化剂     催化剂活化     结晶性     甲烷化     原位谱学    

Electro-catalytic activity of CeO modified graphite felt for carbamazepine degradation via E-peroxone

《环境科学与工程前沿(英文)》 2021年 第15卷 第6期 doi: 10.1007/s11783-021-1410-x

摘要:

•CeOx/GF-EP process had the better degradation efficiency than GF-EP process.

关键词: E-peroxone     CeOx     Graphite felt     Carbamazepine     Mineralization    

Evolution of humic substances in polymerization of polyphenol and amino acid based on non-destructive characterization

Jianmei Zou, Jianzhi Huang, Huichun Zhang, Dongbei Yue

《环境科学与工程前沿(英文)》 2021年 第15卷 第1期 doi: 10.1007/s11783-020-1297-y

摘要: Abstract • Humification evolution was identified with non-destructive characterization method. • Humification process from precursors to fulvic and humic acid was confirmed. • MnO2 alone had limited oxidation ability to form HA. • MnO2 played a key role as a catalyst to transform FA to HA in the presence of O2. • MnO2 could affect the structure of the humification products. Abiotic humification is important in the formation and evolution of organic matter in soil and compost maturing processes. However, the roles of metal oxides in abiotic humification reactions under micro-aerobic remain ambiguous. The aim of this study was to use non-destructive measurement methods to investigate the role of MnO2 in the evolution of humic substances (HSs) during oxidative polymerization of polyphenol-amino acid. Our results suggested a synergistic effect between MnO2 and O2 in promoting the polymerization reaction and identified that MnO2 alone had a limited ability in accelerating the transformation of fulvic acid (FA) to humic acid (HA), whereas O2 was the key factor in the process. Two-dimensional correlation spectroscopy (2D-COS) showed that the evolution in the UV-vis spectra followed the order of 475–525 nm>300–400 nm>240–280 nm in the humification process, indicating the formation of simple organic matter followed by FA and then HA. 13C nuclear magnetic resonance (13C NMR) analysis revealed that the products under both air and N2 conditions in the presence of MnO2 had greater amounts of aromatic-C than in the absence of MnO2, demonstrating that MnO2 affected the structure of the humification products. The results of this study provided new insights into the theory of abiotic humification.

关键词: Two-dimensional correlation spectroscopy (2D-COS)     Humic substances (HSs)     Humification     Manganese dioxide     Polyphenol    

Effects of preparation methods on the activity of CuO/CeO

Huanhuan Shang, Xiaoman Zhang, Jing Xu, Yifan Han

《化学科学与工程前沿(英文)》 2017年 第11卷 第4期   页码 603-612 doi: 10.1007/s11705-017-1661-z

摘要: CO oxidation has been investigated on three CuO/CeO catalysts prepared by impregnation, co-precipitation and mechanical mixing. The origin of active sites was explored by the multiple techniques. The catalyst prepared by impregnation has more highly dispersed CuO and stronger interactions between CuO and CeO to promote the reduction of CuO to Cu species at the Cu-Ce interface, leading to its highest catalytic activity. For the catalyst prepared by co-precipitation, solid solution structures observed in Raman spectra suppress the formation of the Cu-Ce interface, where the adsorbed CO will react with active lattice oxygen to form CO , and thus it displays a lower catalytic performance. No Cu-Ce interface exists in the catalyst prepared by the mechanical mixing method due to the separate phases of CuO and CeO , resulting in its lowest activity among the three catalysts.

关键词: CuO/CeO2     CO oxidation     interfaces     structure-performance relationship     active sites    

Characterization and performance of V

Caiting LI, Qun LI, Pei LU, Huafei CUI, Guangming ZENG

《环境科学与工程前沿(英文)》 2012年 第6卷 第2期   页码 156-161 doi: 10.1007/s11783-010-0295-x

摘要: A series of CeO supported V O catalysts with various loadings were prepared with different calcination temperatures by the incipient impregnation. The catalysts were evaluated for low temperature selective catalytic reduction (SCR) of NO with ammonia (NH ). The effects of O and SO on catalytic activity were also studied. The catalysts were characterized by specific surface areas (S ) and X–ray diffraction (XRD) methods. The experimental results showed that NO conversion changed significantly with the different V O loading and calcination temperature. With the V O loading increasing from 0 to 10 wt%, NO conversion increased significantly, but decreased at higher loading. The optimum calcination temperature was 400°C. The best catalyst yielded above 80% NO conversion in the reaction temperature range of 160°C–300°C. The formation of CeVO on the surface of catalysts caused the decrease of redox ability.

关键词: V2O5/CeO2 catalysts     NH3-SCR (selective catalytic reduction)     the incipient impregnation     low temperatures    

Catalytic combustion of methane over a highly active and stable NiO/CeO

Xiuhui Huang, Junfeng Li, Jun Wang, Zeqiu Li, Jiayin Xu

《化学科学与工程前沿(英文)》 2020年 第14卷 第4期   页码 534-545 doi: 10.1007/s11705-019-1821-4

摘要: In the last decades, many reports dealing with technology for the catalytic combustion of methane (CH ) have been published. Recently, attention has increasingly focused on the synthesis and catalytic activity of nickel oxides. In this paper, a NiO/CeO catalyst with high catalytic performance in methane combustion was synthesized via a facile impregnation method, and its catalytic activity, stability, and water-resistance during CH combustion were investigated. X-ray diffraction, low-temperature N adsorption, thermogravimetric analysis, Fourier transform infrared spectroscopy, hydrogen temperature programmed reduction, methane temperature programmed surface reaction, Raman spectroscopy, electron paramagnetic resonance, and transmission electron microscope characterization of the catalyst were conducted to determine the origin of its high catalytic activity and stability in detail. The incorporation of NiO was found to enhance the concentration of oxygen vacancies, as well as the activity and amount of surface oxygen. As a result, the mobility of bulk oxygen in CeO was increased. The presence of CeO prevented the aggregation of NiO, enhanced reduction by NiO, and provided more oxygen species for the combustion of CH . The results of a kinetics study indicated that the reaction order was about 1.07 for CH and about 0.10 for O over the NiO/CeO catalyst.

关键词: methane combustion     NiO/CeO2 catalyst     interaction     oxygen vacancy     kinetic study    

Selective hydrogenation of acetylene over Pd/CeO

Kai Li, Tengteng Lyu, Junyi He, Ben W. L. Jang

《化学科学与工程前沿(英文)》 2020年 第14卷 第6期   页码 929-936 doi: 10.1007/s11705-019-1912-2

摘要: Five hundred ppm Pd/CeO catalyst was prepared and evaluated in selective hydrogenation of acetylene in large excess of ethylene since ceria has been recently found to be a reasonable stand-alone catalyst for this reaction. Pd/CeO catalyst could be activated by the feed gas during reactions and the catalyst without reduction showed much better ethylene selectivity than the reduced one in the high temperature range due to the formation of oxygen vacancies by reduction. Excellent ethylene selectivity of ~100% was obtained in the whole reaction temperature range of 50°C–200°C for samples calcined at temperatures of 600°C and 800°C. This could be ascribed to the formation of Pd Ce O or Pd-O-Ce surface species based on the X-ray diffraction and X-ray photoelectron spectroscopy results, indicating the strong interaction between palladium and ceria.

关键词: selective hydrogenation     acetylene     Pd/CeO2     strong interaction    

Characterization and catalytic activity of soft-templated NiO-CeO

Luciano Atzori, Maria Giorgia Cutrufello, Daniela Meloni, Barbara Onida, Delia Gazzoli, Andrea Ardu, Roberto Monaci, Maria Franca Sini, Elisabetta Rombi

《化学科学与工程前沿(英文)》 2021年 第15卷 第2期   页码 251-268 doi: 10.1007/s11705-020-1951-8

摘要: Nanosized NiO, CeO and NiO-CeO mixed oxides with different Ni/Ce molar ratios were prepared by the soft template method. All the samples were characterized by different techniques as to their chemical composition, structure, morphology and texture. On the catalysts submitted to the same reduction pretreatment adopted for the activity tests the surface basic properties and specific metal surface area were also determined. NiO and CeO nanocrystals of about 4 nm in size were obtained, regardless of the Ni/Ce molar ratio. The Raman and X-ray photoelectron spectroscopy results proved the formation of defective sites at the NiO-CeO interface, where Ni species are in strong interaction with the support. The microcalorimetric and Fourier transform infrared analyses of the reduced samples highlighted that, unlike metallic nickel, CeO is able to effectively adsorb CO , forming carbonates and hydrogen carbonates. After reduction in H at 400 °C for 1 h, the catalytic performance was studied in the CO and CO co-methanation reaction. Catalytic tests were performed at atmospheric pressure and 300 °C, using CO/CO /H molar compositions of 1/1/7 or 1/1/5, and space velocities equal to 72000 or 450000 cm ∙h ∙g . Whereas CO was almost completely hydrogenated in any investigated experimental conditions, CO conversion was strongly affected by both the CO/CO /H ratio and the space velocity. The faster and definitely preferred CO hydrogenation was explained in the light of the different mechanisms of CO and CO methanation. On a selected sample, the influence of the reaction temperature and of a higher number of space velocity values, as well as the stability, were also studied. Provided that the Ni content is optimized, the NiCe system investigated was very promising, being highly active for the CO co-methanation reaction in a wide range of operating conditions and stable (up to 50 h) also when submitted to thermal stress.

关键词: soft template method     NiO-CeO2 catalysts     CO and CO2 co-methanation     synthetic natural gas production    

Synthesis, physicochemical characterizations and catalytic performance of Pd/carbon-zeolite and Pd/carbon-CeO

Zeinab JAMALZADEH, Mohammad HAGHIGHI, Nazli ASGARI

《环境科学与工程前沿(英文)》 2013年 第7卷 第3期   页码 365-381 doi: 10.1007/s11783-013-0520-5

摘要: In this work, xylene removal from waste gas streams was investigated via catalytic oxidation over Pd/carbon-zeolite and Pd/carbon-CeO nanocatalysts. Activated carbon was obtained from pine cone chemically activated using ZnCl and modified by H PO . Natural zeolite of clinoptilolite was modified by acid treatment with HCl, while nano-ceria was synthesized via redox method. Mixed supports of carbon-zeolite and carbon-ceria were prepared and palladium was dispersed over them via impregnation method. The prepared samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Brunauer-Emmett-Teller surface area (BET), Fourier transform infrared spectroscopy (FTIR) and thermogravimetric (TG) techniques. Characterization of nanocatalysts revealed a good morphology with an average particle size in a nano range, and confirmed the formation of nano-ceria with an average crystallite size below 60 nm. BET analysis indicated a considerable surface area for catalysts (~1000 m ·g ). FTIR patterns demonstrated that the surface groups of synthesized catalysts are in good agreement with the patterns of materials applied in catalyst synthesis. The performance of catalysts was assessed in a low-pressure catalytic oxidation pilot in the temperature range of 100°C–250°C. According to the reaction data, the synthesized catalysts have been shown to be so advantageous in the removal of volatile organic compounds (VOCs), representing high catalytic performance of 98% for the abatement of xylene at 250°C. Furthermore, a reaction network is proposed for catalytic oxidation of xylene over nanocatalysts.

关键词: Pd/carbon-CeO2     Pd/carbon-zeolite     pine cone     ZnCl2     catalytic oxidation     xylene    

Low-temperature selective catalytic reduction of NO with NH based on MnO-CeO/ACFN

SHEN Boxiong, LIU Ting, SHI Zhanliang, SHI Jianwei, YANG Tingting, ZHAO Ning

《化学科学与工程前沿(英文)》 2008年 第2卷 第3期   页码 325-329 doi: 10.1007/s11705-008-0053-9

摘要: MnO-CeO/ACFN were prepared by the impregnation method and used as catalyst for selective catalytic reduction of NO with NH at 80°C–150°C. The catalyst was characterized by N-BET, scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR). The fraction of the mesopore and the oxygen functional groups on the surface of activated carbon fiber (ACF) increased after the treatment with nitric acid, which was favorable to improve the catalytic activities of MnO-CeO/ACFN. The experimental results show that the conversion of NO is nearly 100% in the range 100°C–150°C under the optimal preparation conditions of MnO-CeO/ACFN. In addition, the effects of a series of performance parameters, including initial NH concentration, NO concentration and O concentration, on the conversion of NO were studied.

关键词: preparation     conversion     favorable     selective catalytic     MnO-CeO/ACFN    

标题 作者 时间 类型 操作

Interface engineering for enhancing electrocatalytic oxygen evolution reaction of CoS/CeO heterostructures

期刊论文

Ultrasound-assisted co-precipitation synthesis of mesoporous Co3O4–CeO2 composite oxides for highly selective

期刊论文

Al2O3 and CeO2-promoted MgO sorbents for CO2 capture at moderate

Huimei Yu, Xiaoxing Wang, Zhu Shu, Mamoru Fujii, Chunshan Song

期刊论文

Preparation and selection of Fe-Cu sorbent for COS removal in syngas

Bowu CHENG, Zhaofei CAO, Yong BAI, Dexiang ZHANG

期刊论文

CeO doping boosted low-temperature NH-SCR activity of FeTiO catalyst: A microstructure analysis and reaction

期刊论文

用于CO甲烷化的Ni/CeO2催化剂还原过程重构行为调控研究

曹昕宇, 浦天成, Bar Mosevitzky Lis, Israel E. Wachs, 彭冲, 朱明辉, 胡永康

期刊论文

Electro-catalytic activity of CeO modified graphite felt for carbamazepine degradation via E-peroxone

期刊论文

Evolution of humic substances in polymerization of polyphenol and amino acid based on non-destructive characterization

Jianmei Zou, Jianzhi Huang, Huichun Zhang, Dongbei Yue

期刊论文

Effects of preparation methods on the activity of CuO/CeO

Huanhuan Shang, Xiaoman Zhang, Jing Xu, Yifan Han

期刊论文

Characterization and performance of V

Caiting LI, Qun LI, Pei LU, Huafei CUI, Guangming ZENG

期刊论文

Catalytic combustion of methane over a highly active and stable NiO/CeO

Xiuhui Huang, Junfeng Li, Jun Wang, Zeqiu Li, Jiayin Xu

期刊论文

Selective hydrogenation of acetylene over Pd/CeO

Kai Li, Tengteng Lyu, Junyi He, Ben W. L. Jang

期刊论文

Characterization and catalytic activity of soft-templated NiO-CeO

Luciano Atzori, Maria Giorgia Cutrufello, Daniela Meloni, Barbara Onida, Delia Gazzoli, Andrea Ardu, Roberto Monaci, Maria Franca Sini, Elisabetta Rombi

期刊论文

Synthesis, physicochemical characterizations and catalytic performance of Pd/carbon-zeolite and Pd/carbon-CeO

Zeinab JAMALZADEH, Mohammad HAGHIGHI, Nazli ASGARI

期刊论文

Low-temperature selective catalytic reduction of NO with NH based on MnO-CeO/ACFN

SHEN Boxiong, LIU Ting, SHI Zhanliang, SHI Jianwei, YANG Tingting, ZHAO Ning

期刊论文